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The symmetry and exact solutions of the non-linear d’Alembert 
equation for complex fields 

W I Fushchich and I A Yegorchenko 
The Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Repin Street 
3, Kiev, 4, USSR 

Received 18 January 1989 

Abstract. The non-linear wave equations for the complex scalar field invariant under a 
conformal group are constructed and multiparametrical exact solutions of certain non-linear 
complex d’Alemben equations are found. 

1. The non-linear wave equation 

The non-linear wave equation 

p , p , u + F ( u ) = O  

for the real function U = U( xo = t ,  x, , . . . , x,) is invariant under the extended Poincari 
algebra A,P( 1, n )  = (P,, J,,, D )  

(1) 

where D is the dilation operator ( D  = x,p, + aup,) iff F (  U )  = A u k  (Fushchich and 
Serov 1983). 

The classical and quantum scalar field, as is well known (see Bogolubov and Shirkov 
1973), is described by the wave equation for the complex function U. Therefore it is 
interesting to construct the classes of non-linear wave equations invariant under wider 
groups than the Poincari group. In the case of real fields, as was shown by Fushchich 
and Serov (1983), there exist only two classes of such non-linear fields. In the complex 
case there are wide classes of fields invariant under groups which include the Poincari 
group P(1, n )  as the subgroup. 

In the present paper for the classical complex field U we construct the non-linear 
second-order wave equations 

(the asterisk designates the complex conjugation and we indicate the sum by repeating 
indices: p,p,  = p ; - p ;  -. . . - p : )  invariant under the following Lie algebras (containing 
as subalgebra the Poincare algebra AP(1, n )  = ( P , ,  J,,) with the basic elements (1)):  

3 7  

A:’)= A:’)P( 1, n) = (P,, J,,, 0’). 
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The dilation operator DI has the form 

Di = x,.P, - A ( ~ P , ,  + u * P ~ * )  

pu  = -i - a . a  
au a u  pu* = - 1  7 

A:”=A:”P(l, n)=(P, ,  J,,, D2) .  

The dilation operator D2 has the form 

Dz = x,~, - A (P, + P,*) 
A?=ArP(1, n)=(p , ,J , , ,Di ,Q) .  

The operator of charge has the form 

Q = U * P ,  - UP” * 
A : l ) = A ‘ l ) C ( l , n ) = ( P , , J , , , D l ,  K i ’ ) .  

The operators K ii generating the conformal transformations have the form 

K:’ = 2x,D - x,,x,,~,. 

A : 2 ) = A ‘ 2 ) C ( 1 , n ) = ( P , , J , , , D l ,  K : ’ , Q )  

A:3’=AA(3)C(l, n)=(P, ,  J,,, D z ,  K F ) )  

K!+’ = 2x,D, - x,x.P,. 

To describe the invariant equations of the form ( 2 )  we need the differential invariants 
of the zero and first order for the algebras A:”, . . . , Ai3’. As is well known (see, e.g. 
Ovsyannikov 1978) these invariants are solutions of the system 

1 

X , @ ( U ,  U*, U,, U:) = o  (3)  

where X, are the first prolongations of the basis operators of the corresponding algebras. 

Not going into details we adduce the explicit form of the invariants for the algebras 

I 

* * *  AP( 1, n ) :  U, U*, rl  = u,u,, rz = u,u,,  r3 = u,u ,  

AP(1, n ) @ Q :  u ’+u** ,  r l + r 3 ,  r s - r l r 7  R = u*‘r1 -2uu*r ,+  u2r3 

A,: __- - ( rl  + r3)’ r f  - r l  r3 R 
( U 2 + U * ’  ) ,4 - I ’  ( r l  + r3)*’ (U’+ u * 2 ) ( r l  + r 3 )  
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Ai3’(A ZO): U--* ,  ( r I -2r ,+r3)* / ’exp  U. 

These systems of invariants are complete when n 2 3. 
The classification of the non-linear equations for the complex scalar field invariant 

under the enumerated algebras gives the following theorem. 

Theorem. Equation (2) is invariant under the algebras 

AP( 1 ,  n )  when F = cp(w) 

cp(w) A:‘ ’ when 

A‘,?’ when F = exp(u)cp(w) 

F =  U l - 2 / A  

A2 when F =  ( ~ ~ + u * ~ ) - ” ~ ( u f ( w ) + i u * g ( w ) )  

when A = O  there are no invariant equations of the form (2) ;  

( uf( w ) + i U * g (  1) Ai2’, A =- 1 - n  when F = ( U 2 +  U*2)?/(n-l) 
2 

(when A f ( 1  - n)/2 there are no invariant equations of the form ( 2 ) ) ;  
n - 1  
2A 

A:3’, A f 0 when F=- r ,+exp  

(here we designate as f and g arbitrary real and as (p arbitrary complex functions, w 
are invariants of the corresponding algebras). 

To prove the theorem it is necessary to use the Lie invariance condition in the form 

2 

X , L ( , = ,  = o  
L’=O 

2 

where L = 0 U - F (  U, U*, U,, U:) (0 U = prpru), X i  are the second prolongations of the 
basis elements of the algebras being considered, which we resolve with respect to the 
unknown function for every algebra. 

A similar theorem can be formulated and proved for the system of two wave 
equations for the pair of real functions. 

The classification of the general quasilinear PoincarC-invariant equation for the 
complex scalar function is adduced by Fuschich and  Yegorchenko (1988). 

2. The solutions of wave equations for the complex function 

Let us consider the equation 

0 U = F (  U, U*) 

which is invariant under the Poincare algebra (1).  Its solutions can be found with the 
help of the reduction with respect to subalgebras of AP(1, n )  as was done in the real 
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case by Fushchich and  Serov (1983) or Winternitz et a1 (1987) but such reduction 
leads mostly to systems of ordinary differential equations not solvable in quadratures; 
one of the ways to avoid this difficulty was suggested by Grundland and Tuszynski 
(1987). To find the exact solutions of ( 5 )  it is advisable to search especially for ansatze 
leading to systems of differential equations solvable in quadratures. 

Using the ansatz (see, e.g., Fushchich 1981, Fushchich and Serov 1983) 

= cp(w) U* = p * ( w )  w = w ( x )  (6) 
we come to the system 

( 4  = d p / d w  j. 

The condition of separation of variables in the system (7)  is that the new variable 
w must satisfy the conditions 

where x, T are arbitrary functions (not equal simultaneously to zero). 

(8) and 
Thus to find exact solutions of (5) in the form (6) it is sufficient to solve the system 

To solve the system (8)  we use the results of Collins (1976) where similar systems 
for the functions of three independent variables were investigated. The partial solutions 
o f t h e s y s t e m ( 8 ) w h e n p = 0 , 1 ,  . . . ,  n ;  T ( w ) ~ l , ~ ( w ) = N ( w - A ) - ' ,  N = 0 , 1 ,  . . . ,  n ;  
A =constant, are given in table 1. Evidently when n > 2 they are not general solutions. 

Below we consider systems of the form (5) 

uu = Au(uu*)" ,  

nu*= A*u*(uu*)" 

n u  = ( A , u  +iA2u*)( U'+ U*')" 

U* = ( A  , U* - iA,u)( u 2  + U*?)* 
( A , ,  A 2 ,  K are arbitrary real numbers and A is an arbitrary complex number), which 
are invariant corresponding with respect to the operators Q, = ua, - u*a,. and Q2 = 
u*d, - ua,. (the operator of charge). 

Table 1. 

~~ ~ 

N Solutions Conditions on parameters 

0 w + a), + F (  p y  ) 
( a y  = a , J ,  - a,?', - . . . - a,,)',, ) 

w - A = [ ( a 'J ) (  a 'y)]  ' I  

F is an  arbitrary function of py ,  y, = x,. + a,, 
a , .=cons tan t ,  a ' = ] .  p ' = u p = o  

a;.: = 8 " ,  i , j =  1,. . . , Nt I ;  1,. . .  , n 
J', = x,, + a,,? a,. = constant 
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The system (9) with T ( w ) =  1, x ( w )  = N / ( w  - A )  and w from table 1, for (10) takes 
the form 

4 + (1; = Acp(cpcp*)" 
N 

0 - A  

N 
w - A  

(12) 
$* + (1;* = A*cp*(cpcp*)" 

where N = 0 , 1 , .  . . , n ;  for (11) the system (9) takes the form 
N 

" - A  

N 
w - A  

$+(1; = (A,q+iA2cp*)(q2+q*Z)r 

$ * + C O *  = (Alcp*-iAzq)(cp2+q*2)". 

It is convenient to search for solutions of (12) in the form 
q = r e  i 8  9* = e - i @  

for solutions of (13) in the form 

For the real functions r = r ( w )  and 8 = 8 ( w )  we obtain the system 

i+  r +  x02r = N 
w - A  

e r  + 214 + re  = A2rZkr'. 
N 

w - A  
H e r e A = A , + i A , , x = - l  f o r ( 1 2 ) a n d x = l  for(13) .  

in the parametrical form ( A  = A , ) ) :  
Let N = 0. With an arbitrary k and A 2  = 0 the system (16) has the general solution 

When k = -2 we obtain the general solution of (16) in explicit form in elementary 
functions 

c,  # 0, c2 ,  c 3 ,  c4 are arbitrary real numbers. ( I f  c, = 0, 8 = constant.) 
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Nore 1. The solvability of systems of ordinary differential equations in quadratures is 
connected with their wide symmetry. Systems of the form (12) can be reduced to 
systems of four first-order equations and we may suppose that for their solvability in 
quadratures it is necessary for the range of basis of their invariance algebra to be not 
less than 4 (Ovsyannikov 1978). However, this condition is not sufficient. The system 
(12) when K = -2, N = 0 has the maximal invariance algebra among systems of such 
form with the basis operators 
a,, ma, +&(pa, + p*aqc.), 02a,  + w ( p a ,  + p*a,*), pa, - p*ao. 

but when A 2  # 0 it reduces to a Riccati equation not solvable in quadratures. 

t = ( w  - A )  N - ' ,  r = ( w  - A ) ' - N p  can be reduced to the form 
The system (16) when N Z  1 ,  N Z2, K = ( N - 2 ) ( N -  1 ) - '  by the substitution 

$+ xe2p  = Alp2"" 

2pd + p i  = A2p2"+' .  

We obtain its solutions in parametrical form ( A 2  = 0) and from them we obtain the 
solutions of (16) 

A p 2 K + 2 + 2 + c 2 ) - " 2  2 dp ]  I / ( N - I )  +A.  
P 

c, # 0, c2,  c3, c4 are arbitrary constants chosen for r, 6 to be real. 
From solutions (17)-(  19) and substitutions (14) and (15 )  we obtain the solutions 

of (12) and (13 )  respectively. With w from table 1 we get solutions of the initial 
systems (10) and ( 1  1 ) .  

As (10) and ( 1  1 )  are invariant with respect to the scale transformations it is possible 
to find ansatze reducing them to the first-order differential equations which have more 
chances to be solved in quadratures. We search for such ansatze in the form 

The corresponding conditions on f and w are as follows: 
O f ( x )  = F ( w ) f 2 " " ( x )  

fOw+2f,w, = G ( w ) f 2 " " ( x )  (21) 
w,w, = 0 

where F, G are arbitrary functions. 

into this matter and  adduce only some solutions: 
It is interesting enough to investigate the system (21) itself but here we d o  not go 

f ( x )  = [ ( P i x ) ( P i x ) l "  
f f X  

w =  
[ ( P  'x  ) ( P  ' x  11 

p;p;  = 6 U  b = 0 , 1  ff = ' = 0 1 a = -- 
2K 

the sum by i is implied, i =  1, .  . . , rn, rn S n ;  1 - 2 a Z  m, when b =  1. 
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For the ansatz (20) with f, w from ( 2 2 )  we obtain the reduced equations and their 

For equations ( I O )  
(i) b=0 ,  m + 2 a - 1 # 0  

solutions. 

m + 2 a - 1  A 
2 4a 

= - @(@@*)“ @’W + @  

(ii) b=O, m + 2 a - 1 = 0  

(iii) b = 1 

2 a ( m + 2 a - I )) ’ / *  

In a similar way solutions of (1 1) can be obtained; if @ has the form (15) then 

(i) b = 0 ,  m + 2 a - 1  # O  

) -  I ’ 2K[ (  m + 2 a  - 1)4a ]” ’“ (A I  + A 2 ) - 1 ’ 2 K  (26 )  
r = ( 1 - C I W * ~ m t 2 ~ - I )  

(iii) b = 1, m + 2 a  - 1 # 0 

r = (  - ( 1 - C l  w )  
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Substituting the obtained solutions (23)-(28) of the reduced equations into the 
ansatz (20) and (22) we get the multiparametrical families of exact solutions of (10) 
and (1 1) correspondingly. 

The ansatz (20) and (22)  when b # 0, b f 1 allows us to obtain the reduced equations 
of the second order 

@"w24b(b - l )+@'w[4b2-  2 b ( m  + 1) +4a( l -2b) ]+2a@(2a  + m - 1) 

= A @ F ( @ ,  @*) (29) 

F = ( @ @ * ) k  for (10) 

F = ( @ Z + @ * ' ) k  for (1 1). 
We can adduce the parametrical solutions of (29) when 

2a 
m + 4 a - 1  b =  A = A *  ( A * = O ,  A = A I )  

U=[ (-&r2K+2+++c2+Br2 %C2 d r +  c3 r 

B = ; ( r + 4 ~ - 1 ) ~  

x = -1 and the representation (14) for @ is taken for ( lo),  and x = 1 and the representa- 
tion (15) for 0 is taken for (11). 

3. The conformally invariant families of solutions 

Let us consider the conformally invariant system of the form (2) ( n  = 3): 

where R is defined in (4). 

F using the formulae of conformal reproduction of solutions. 
We obtain here the conformally invariant families of solutions of (31) with certain 

We used the ansatze (20) where 

W = a X  f =  (x*)-l/* 

w = a x / x '  f =  ( x 2 ) - 1 / 2  

(33a) w = a x  f = [ xz - 2 E X S X  + S*(  E X ) * ) ]  - "* 

w = a x  f =  [ 2 a x p x - p 2 ( a X ) ' + C ( a X ) ] - 1 ~ ~  (336) 
where a*= E * =  a& = a8 =0, aP = ES = 1. 
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When U, U* are defined from the ansatze (20), ( 3 2 )  and ( 3 3 ) ,  R = O .  Then the 
reduced equations have the form 

where x = -1 for ( 3 2 ) ,  x = 1 for ( 3 3 ) .  
The solution of (34) in parametrical form can be obtained for arbitrary F. 
The multiparametrical conformally invariant families of solutions we adduce for 

the equations are 

U = (U' + u *,)( g, u + ig,u*) 

n u *  = (U,+ ~ * ~ ) ( g , u * - i g , u )  
( 3 5 )  

0 U = (8, + ig2)u( uu*)  

U U* = (g, - ig,) U*( u u * )  

where g, ,  g, are real functions of R ( u 2 +  u * , ) - ~ ,  

given by the following formulae. The solutions of (35) are 
Their families of solutions are non-reproducible by conformal transformations and 

A' = g'(0) A2ZO C J E R  c ,=o  ( j  = 1,2) 
and the solutions of (36) are 

U = f ( x ) w X ' 2 1 A I x w X + c I I - 1 ' 2 e x p  

f ( x )  and w being substituted from table 2 and x being defined from the corresponding 
ansatze (32) or (33). 

Table 2. 

a x  + a 7 x 2  + a h (  7, x )  
-1  

x' + 2 bx + 2 brx' + b ' a (  r, x ) 
( 3 2 b )  U (  T, x )[ x' + 2 bx + 2 brx' + b ' u (  r, x )  ] 

( 3 2 ~ )  -1  

( 3 3 6 )  1 
( U ( 7 ,  X ) ) - ' [ a X +  a 7 X 2 +  abU(r, X ) ]  W U ( 7 ,  X ) [ 2 ( p X + p r X ' )  - P ' ( a X  + ( r T X ' )  

+ ( c + 2 bp - p2 a b )  U (  r, x ) ]  

- (EX + E r X ' ) (  8X + 87X') + 8'( E X  + E d ) '  

+ U (  T, x ) [ x 2  + 2 b x +  2brx' 
- 2 b 8 ( e X + ~ r X ' )  
- 2 b ~ ( 8 X +  8 T X ' )  + 8'2Eb(EX+2E7X2) 
+ ~ ( r , ~ ) ( b ~ - 2 b ~ b & + S ' ( ~ b ) ' ]  

1 ( 3 3 a )  

a( r, x )  = 1 + 2 r x  + r'x'; b,, T,, are arbitrary parameters. 
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